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Structured Abstract 
 
Purpose: The purpose of this project was to conduct a pilot health information technology research project 
focusing on the design of a novel drug-drug interaction knowledgebase and accompanying clinical decision 
support architecture to provide individualized DDI alerts. Our approach was to change the underlying 
framework for DDI alerting to an advanced and contextual CDS. 
Scope: We examined drug-drug interactions (DDI) that are commonly ignored or overridden by healthcare 
providers to determine if computer algorithms could be more specific to patient characteristics and medication 
attributes. 
Methods: The most frequently overridden DDI warnings from a large tertiary care medical center were 
obtained and those drug combinations where contextual factors may eliminate the need to warn of potential 
harm were studied. Data were extracted from electronic health records and the DDI algorithms were applied to 
determine the frequency of alerting using the current approach and new algorithms.  
Results: A total of 21 combinations were evaluated, with 12 having characteristics amendable for developing 
CDS alert algorithms. These characteristics included patient attributes (age; renal function; pharmacogenomic 
status; prior medical history; laboratory measurements) and drug attributes (dose; duration of therapy; 
formulation; route of administration; and concomitant therapy). The reduction in the number of alerts ranged 
from zero to 100% depending on the drug pair. The study suggests that DDI alerting algorithms can be 
developed to reduce irrelevant warnings associated with DDIs.  
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REPORT 
 
1. Purpose 
 

Healthcare providers have succinctly summarized that, “The current drug-drug interaction (DDI) 
alert system is broken.”1, 2 Electronic prescribing and pharmacy systems include alerts for DDIs as a form of 
clinical decision support (CDS) to warn prescribers and pharmacists of potentially harmful medication 
combinations, and ideally provide documentation on how to avoid or mitigate the risk of patient harm. However, 
the promise of improved outcomes remains unfulfilled because there is an excessive volume of alerts 
perceived by clinicians as irrelevant or unhelpful; over 90% of DDI alerts are overriden.3, 4  

Proprietary drug knowledgebases (KBs) were not initially envisioned to support DDI checking, but 
rather as pricing and inventory systems.5 Current systems are ineffective, particularly among institutions or 
practices lacking sufficient resources to customize commercially available products. Given these issues, the 
specific aims of this project were: 
 

1) Prototype a rules-based DDI KB with attributes necessary for patient-specific and contextual 
alerting; 
2) Develop clinical algorithms that extract and use data from an existing commercially available 
EHR system and integrates with the DDI KB; and 
3) Conduct a validation of clinical algorithms using simulated and actual patient data. 
 

 
2. Scope 
 
Background 

Clinicians override approximately 90% or more of DDI alerts, primarily because the alerts are not 
considered relevant.3, 4, 6 Excessive irrelevant alerts are thought to decrease users’ sensitivity to alerts, 
producing what is known as the cry-wolf phenomenon, alarm fatigue, or more specifically alert fatigue.3, 7, 8 
Alert fatigue is more than just a frustration; it can lead clinicians to respond inappropriately.9  
 Electronic prescribing and pharmacy systems include alerts for DDIs as a form of clinical decision 
support (CDS) to warn prescribers and pharmacists of potentially harmful medication combinations, and ideally 
provide documentation on how to avoid or mitigate the risk of patient harm. However, this technology has fallen 
short of fulfilling its potential to improve patient safety. It is urgent that these issues be addressed because 
more and more healthcare organizations in the United States are trying to include DDI alerts in their plans to 
achieve meaningful use of electronic health records (EHRs) (i.e., CMS Meaningful Use Core Measure 2).10, 11 

Approaches to reduce alert fatigue include turning-off entire categories of alerts or using expert opinion 
to refine commercial KBs to a smaller set of DDIs, and tiering alerts by relative potential clinical importance.3, 4, 

10, 12, 13 However, most institutions lack the resources and expertise to customize off-the-shelf KBs.2 
Furthermore, patient specificity plays a major role in alert acceptance.3, 14-16 In one study, when alerts failed to 
provide contextual information, prescribers bypassed the alert and then searched for the relevant data they 
needed.17 There are many situations where a particular DDI alert might not be clinically relevant to a specific 
patient due to mitigating factors that result in a negligible risk of adverse outcomes. For example, angiotensin-
converting enzyme (ACE) inhibitors and potassium-sparing diuretics are frequently used together with good 
therapeutic results among patients with adequate kidney function and normal potassium levels. Adjudication of 
DDI seriousness should be based on an assessment of contextual factors such as the patient’s age, dosing 
regimen, duration of therapy, route of administration, timing sequence, concomitant medications, and 
predisposing diseases.15, 18-20 Therefore, to reduce excessive and irrelevant alerts, DDI alerts must be filtered 
and prioritized by contextual factors that increase or decrease risk of a harmful interaction. 

Limited research has been conducted regarding intelligent filtering and context-based DDI alerts. Duke 
et al. designed a model to integrate patient-specific data into DDI alerts via a web-based service that was 
interoperable across clinical information systems.21 In a randomized controlled follow-up study, Duke et al. 
found no improvement in prescriber adherence to DDI alerts that included the patient’s most recent relevant 
laboratory values for hyperkalemia-associated DDIs among high-risk patients.22 It is important to note that 
Duke et al.’s alerting system did not use patient-specific information to intelligently filter alerts for clinicians. 



Rather, the alerts simply showed the relevant laboratory values, assuming clinicians would make the 
necessary cognitive connections. The authors acknowledged that stating the elevated risk for each patient 
might have improved adherence. This study suggested the importance of addressing alert specificity. For 
example, alerts for lower-risk patients could have been filtered or downgraded. Such tiering, or prioritizing, of 
alerts has been shown to improve adherence.10  
 Studies have demonstrated the potential for substantial reductions in alert volume when rules engines 
incorporate contextual factors. Riedmann et al. used a combination of literature searches and expert interviews 
to design a context model of 20 factors that could be used to prioritize drug safety alerts depending on the 
characteristics of the specific patient (e.g., clinical status), alert (e.g., severity), and user or organizational unit 
(e.g., professional experience of user).23 Seidling et al. observed that more than half of the alerts that would 
have been triggered for DDIs involving cholesterol-lowering statin drugs were inappropriate because the dose 
of the statin was not considered by the software.24 More recently, Seidling et al. identified 14 types of 
modulators useful for refining the specificity of DDI alerts.15 These could be applied to 83 out of 100 frequently 
triggered DDI alerts using relevant factors in the EHR. However, the clinical relevance of this work was limited 
by the fact that the investigators did not conduct an evaluation of the altered alerts to determine 
appropriateness. In preliminary work, researchers in the Netherlands observed up to an 80% reduction in alerts 
to prescribers following modifications to alerting rules.25 Horn et al. were able to reduce the potential number of 
major alerts by nearly 70% by applying an operational classification that specified DDI clinical management 
strategies to a commercial KB.13 However, more research is needed to evaluate the effect of implementation of 
contextual factors in DDI alerting systems.  

This project was designed to support the next generation of DDI CDS rules and data necessary that 
fulfill the five rights of CDS as outlined by AHRQ (getting the right information to the right stakeholder, at the 
right point in workflow, through the right channel, and the right format).26 One of the most important of these is 
the first − the right information. The project was a pilot health IT research project focusing on the design of a 
novel DDI alert approach. Major contributions from this pilot project will be 1) generation of patient-specific 
modifiers and drug specific attributes that can be used to influence if a DDI alert is provided to a prescriber or 
pharmacist; and 2) determine the feasibility of clinical algorithms to reduce alert burden. Results from this study 
can inform future projects and research to broaden the development of drug and patient specific DDI alerting to 
increase the specificity of DDI warnings.  

Context: To meet the requirements of meaningful CDS as specified by the Office of the National Coordinator 
for Health Information Technology, organizations must include DDI checking. Thus, nearly all hospitals and 
most clinics and physician offices have implemented electronic health records (EHRs) that include DDI 
warnings.  
 
Settings: The setting for this study was two-fold. One setting was the University of Arizona Medical Center 
(UAMC), a 385-bed flagship hospital of the University of Arizona Health Network. UAMC-South is a sister 
facility that primarily serves medically indigent and underserved minority populations residing in south Tucson. 
Together, patient care units cover the range of clinical services including pediatrics, surgery including 
transplantation, oncology, medical and cardiac intensive and non-intensive care units, obstetrics and 
gynecology, neurology, and mental health. Algorithm validation was conducted using data obtained from these 
facilities.  
 The second source of data for this study was from a simulated population of Medicare beneficiaries 
developed and maintained by the Observational Health Data Sciences and Informatics (OHDSI), a multi-
stakeholder, interdisciplinary collaborative to bring the value of observational health data through large scale 
analytics. This group is developing and promoting a common data model called OMOP. The validation of 
clinical algorithms using a common data model allows for greater update and distribution of project algorithms. 
In addition, we placed the developed algorithms on OHDSI’s GitHub repository as part of the open-source 
software that researchers and others can access for research and other projects.  

Participants: A sample of patients admitted to both UAMC facilities were selected over a 3-month time period 
based on having received 1 or more medications of interest. From this cohort we identified those observations 
exposed to drug combinations of interest. A total of 50 patient profiles was randomly selected to evaluate each 
drug combination of interest. Observations were excluded if they are: 1) observation only visits (non-admitted); 



2) patients seen only in the emergency department; and 3) procedural based visits. Participants needed to be 
18 years of age or greater to be included in the profile review. For each subject of interest data was queried 
from the EHR databases, excluding name, medical record number, and any other data that would identify a 
patient. Data from laboratory tests and results (including dates/times), medication orders (including medication 
name, strength, dose, route, frequency, start and stop date/time, and directions for administration), 
physiological parameters (including date and time of measurement), patient demographics including age in 
years, and diagnosis codes were used to construct patient profiles. 

3. Methods  
 

The research team met on a weekly schedule for the first year of the project and then approximately bi-
weekly. Each meeting was conducted using Go-To-Meeting. Each meeting was organized as follows: roll call, 
review of agenda items, discussion of agenda items, action items to be completed before next call, and 
scheduling of next call. Prior to the next meeting, meeting minutes and upcoming meeting was emailed to the 
study team. A cloud-based storage folder was created and shared as a central location for sharing files.   
  
Specific Aim 1: Prototype a rules-based DDI KB with attributes necessary for patient-specific and 
contextual alerting.  
 

The research team met for 1-hour webinars on July 24th, July 31st, August 7th, August 14th, August 21st, 
August 28, September 10th, September 28th, October 2nd, October 9th, October 23rd, October 30th, November 
13th, November 20th, and December 11th 2015, January 4th, and January 15th 2016 with primary discussion 
regarding the most commonly overridden drug pairs based upon a 90-day period at Banner - University 
Medical Center. The first priority was to determine which drug-drug interactions were most frequently 
overridden. Using a warnings report, we were able to generate a summary of the most commonly overridden 
drug pairs. Due to the pilot nature of this study, only those combinations of “serious” drug-drug combinations 
were investigated further. This list of drug combinations was then examined more closely to identify those pairs 
that have patient or drug specific factors associated with their use that would modify the risk of harm. Because 
warnings were often grouped by pharmacological/therapeutic class as well as individual chemical entities 
within a class, each drug-drug combination was evaluated.  

For each drug combination, we searched the primary literature and used the extensive holdings of 
articles amassed by Drs. Hansten and Horn over the course of 40 years to identify potential factors. Search 
terms used in abstracting databases included the products (names) involved in the interaction as well as 
therapy specific terms associated with the combination. This included general pharmacology class and 
outcomes associated with exposure to the combination. We also searched using the term “interaction,” “drug-
drug interaction,” “drug interaction,” or combination of both object and precipitant medication names. From 
articles of interest we evaluated citations for additional studies. Other sources included product labeling via 
NLM’s DailyMed27 or FDA’s preapproval reviews and other documents via Drugs@FDA28; DrugBank,29 and 
medication reference databases subscribed to by the University of Arizona College of Pharmacy (Facts & 
Comparisons, Micromedex, Lexi-Comp Online, and the United States Pharmacopeial Convention National 
Formulary (USP-NF)). 
 
Specific Aim 2: Develop clinical algorithms that extract and use data from an existing commercially 
available EHR system and integrates with the DDI KB. 
 

The grant team met for 1-hour webinars on January 27th, February 11th, February 24th, March 7th, March 
24th, April 12th, April 26th, May 11th, June 1st, July 7th, July 21st, August 4th, August 10th, August 25th, September 
2nd, September 22nd, October 12th, October 21st, October 27th, November 9th, December 12th, and December 
21st 2016, January 13th, and January 23rd 2017. 

For each of the drug combinations, evidence was assembled to identify risk factors that would increase 
or decrease the risk of harm. Depending on the number of issues associated with each interaction, a decision 
table was constructed to represent factors and characteristics that would affect the risk of harm. Within each 
decision table were recommendations for 1) no special precautions; 2) assess risk and take action if 
necessary; and 3) use only if the benefit outweighed the risk.   
 After decision tables were constructed, clinical algorithms were then developed using standard 
ontologies.  Medications of interest were mapped to the National Library of Medicine’s RxNORM concept 



unique identifier (CUI). Algorithms then restricted the products of interest to those used for human 
consumption. Restrictions based on formulations were then applied. Clinical algorithms took into account 
factors affecting risk of harm and included: dose over 24-hour period; formulation; duration of therapy; route of 
administration; and concomitant therapy, including products that may inhibit or induce drug metabolism. Patient 
factors were identified and linked to LOINC codes for laboratory tests and International Classification of 
Disease 9th or 10th Edition – Clinical Modification for conditions and past medical history affecting risk. We also 
considered factors such as site of care (inpatient versus ambulatory). Pharmacoeconomic information was also 
considered when developing the algorithms, but due to the lack of a standard ontology we did not specify 
particular genomic procedures or results from those procedures. 
 Both written protocols and schematic flow diagrams were developed to represent the clinical 
algorithms. In addition, clinical algorithms were written using Drools software language, a platform by the Open 
Source CDS platform (OpenCDS). Drools is a Java-based open source business management system.  
 
Specific Aim 3: Conduct a validation of clinical algorithms using simulated and actual patient data. 
 

The grant team met for 1-hour webinars on February 10th, February 17th, March 1st, March 7th, March 
22nd, April 3rd, April 11th, April 19th, April 26th, May 3rd, May 8th, May 16th, May 24th, May 30th, June 8th, June 
22nd, and June 29th.  Since the end of funding, the investigators have continued to meet to work on publications 
and analyses.  Meetings have been held on July 10th, July 19th, August 8th, and August 23rd. 
 
 As mentioned above, two separate data sources were used to test and validate the clinical algorithms, 
including Banner University Medical Center – Tucson, and a simulated population of Medicare beneficiaries 
developed and maintained by the Observational Health Data Sciences and Informatics (OHDSI). The 
simulated Medicare dataset was used to ensure that the clinical algorithms would run against a common data 
model. Only 1,000 persons are included in the dataset and not all data elements necessary for each algorithm 
was available. Thus, we added additional variables to the simulated data to ensure that all algorithms would 
execute without errors.  

The data from the Banner University Medical Center Tucson was used to determine the reduction in 
alerts by comparing the number of alerts generated without the clinical algorithms as compared to the number 
of alerts generated using the clinical algorithms. A sample of patients from UAMC facilities was randomly 
selected over a 3-month time period based on having 1 or more DDI “serious” alerts identified in Aim 1. A total 
of 50 (see sample size calculation below) stays (defined as an admission and discharge) were randomly 
selected to evaluate each drug combination of interest. Observations of interest included persons 18 years of 
age or older.  

Data from each observation was extracted from an EHR and included laboratory tests and results 
(including dates/times), medication orders (including medication name, strength, dose, route, frequency, start 
and stop date/time, and directions for administration), physiological parameters (including date and time of 
measurement), patient demographics including age in years, and diagnosis codes. 

To facilitate the evaluation of the DDI algorithms the patient profiles were loaded into Microsoft Access 
and a “dashboard” layout was created. Information was grouped by type of data. For example, laboratory tests 
and results were located in one area of the dashboard, prescribed medicines in another. This facilitated record 
reviews. 

For each DDI combination of interest, the summary data were reviewed by a physician/pharmacist and 
a pharmacist and applying the logic from the DDI algorithms developed in aim 2. The primary outcome for each 
observation was the classification of alert (i.e., upgrade, downgrade, and data not available). To ensure 
consistency across reviewers, the evaluation was conducted by the physician/pharmacist and then reviewed 
by a pharmacist. Discrepancies between the two reviewers was discussed to determine if algorithms need 
modification to fine-tune the criteria or if it is unfeasible to use a patient centric algorithm for that particular DDI. 
This information was then shared with the entire research team to discuss modifications of the algorithms. The 
algorithms were then discussed with respect to the feasibility of the algorithm and barriers or potential issues 
that would limit the application of the algorithm. 

For the subset of patients that were manually reviewed the frequency of outcomes for the DDI 
algorithms was determined. The positive predictive validity for each potential DDI was calculated where true 
positives were identified by the two clinical reviewers as the patient being at risk for harm from the DDI. The 



rate of false positives (defined as an alert being generated when not necessary) to true positive and total alerts 
was calculated. Due to the pilot nature of this study we were not able to determine the true negative rate 
because it would require a more time consuming complete medical chart review. 

 
4. Results  
 
Aim 1: Prototype a rules-based DDI KB with attributes necessary for patient-specific and contextual 
alerting.  
 

Data on the frequency of DDI warnings that were overridden are shown in Table 1. Due to the pilot 
nature of this study, it was determined to examine only those interactions where the frequency of overrides 
over a 3-month period exceeded 1,000 times. For example, the most common combination that was presented 
was for fentanyl or opioid products with select medications that inhibit the cytochrome P450 3A4 pathway. 
Nearly 5,000 alerts were presented to clinicians over a 3-month period for this combination.  
 

Table 1: Serious Drug-Drug Interactions Frequently  
Overrode in a Tertiary Medical Center 

Object and Precipitant Medications Overrides 
Alfentanil; Fentanyl; Hydrocodone; Ocycodone / SLT 3A4 Inhibit 4835 
Anticoagulants / Salicylates   2842 
Varicella - Live Vaccines / Live Vaccines 2568 
Potassium Preps / Potassium Sparing Diuretics 2545 
Hepatitis B - Selected Live Viral Vaccines / Selected Immunoglobulins 2490 
Selected Immunosuppressants / Azole Antifungal Agents 2306 
Citalopram / QT Prolonging Agents 1892 
Amiodarone / Possible QT Prolonging Agents 1739 
Ketorolac / Anticoagulants 1603 
MMR - Live Vaccines / Live Vaccines 1576 
Clonidine / Beta-Blockers 1476 
Selected Anticoagulants / SSRIS; SNRIS 1473 
MMR - Selected Live Viral Vaccines / Selected Immunoglobulins 1472 
Anticoagulants / Thyroid 1426 
Intravenous Ceftriaxone / Intravenous Calcium Products 1387 
Metoclopramide / Antipsychotics; Phenothiazines; Rivastigmine 1358 
Quetiapine / QT Prolonging Agents 1131 
Epinephrine / Beta-Blockers 1095 
Trazodone / QT Prolonging Agents 1070 

 
These “serious” DDIs were further evaluated to determine if patient or medication characteristics could 

affect the risk of harm such that an alert could be suppressed when no harm was likely. For those potential DDI 
combinations involving medication classes (i.e., azole agents, potassium-sparing diuretics, select 3A4 
inhibitors, QT prolonging agents, beta-blockers, selective serotonin reuptake inhibitors, selective 
norepinephrine reuptake inhibitors, antipsychotics, anticoagulants), each unique combination of object and 
precipitant medications were reviewed to assess the potential for a DDI, not just a theoretical interaction. This 
further narrowed the specific medications to be included in the clinical algorithms (Aim 2). The investigators 
identified those combinations to further develop alerting algorithms and are shown in Table 2. 

 
 
 
 

 



 
  
 
 
 
 

 

Evaluation of these medications and their attributes was conducted using several drug databases  
including the World Health Organization’s (WHO) anatomical therapeutic classification system, MicroMedex, 
Facts and Comparisons, and Lexi-Comp. For example, non-steroidal anti-inflammatory drugs (NSAIDs) are 
classified by the WHO into 9 specific subclasses as shown in Table 3 below. Given that each specific product 
could be linked to multiple therapeutic classes and that new formulations, strengths, combinations, routes of 
administration, and derivatives are constantly being developed and marketed, we decided that it would not be 
efficient to construct an entirely new drug knowledgebase but rather focus our efforts on developing clinical 
algorithms using the RxNORM database developed and maintained by the National Library of Medicine and 
other standard ontologies. This would more likely result in the clinical algorithms being more widely adopted 
and avoid the need to continually update the database to accommodate additions/removals for specific drug 
products (at the national drug code level).  
 

Table 3: World Health Organization Anatomical  
Therapeutic Classifications for Ibuprofen 

Therapeutic Class 
Code 

Description 

N02AJ08 Opioids in combination with non-opioid analgesics: codeine and 
ibuprofen 

M01AE14 Propionic acid derivatives: dexibuprofen 
C01EB16 Other cardiac preparations 
G02CC01 Anti-inflammatory products for vaginal administration 
M01AE01 Propionic acid derivatives: ibuprofen 
M02AA13 Anti-inflammatory preparations, non-steroids for topical use 
R02AX02 Other throat preparations: ibuprofen 
M01AE51 Propionic acid derivatives: ibuprofen combinations 
N02AJ19 Opioids in combination with non-opioid analgesics: oxycodone and 

ibuprofen 
 
 Decision tables were constructed for the 12 combinations of interest. Figure 1 below is an illustrative 
example for the decision table involving beta-blockers and epinephrine. 
 
 
 

 
 
 

  

Table 2: Serious Drug-Drug Interactions with Modifiable Risk Factors 
Potential Drug-Drug Interaction Total Warnings Overridden 
Opioids / Fluconazole 4835 
Warfarin / Salicylates 2842 
Potassium supplement / Potassium-sparing Diuretics 2545 
Immunosuppressants / Azole Antifungals 2306 
Amiodarone / QT Prolonging Agents 1739 
Clonidine / Beta-Blockers 1476 
Warfarin / SSRIs; SNRIs 1473 
Ceftriaxone / Calcium 1387 
Metoclopramide / Antipsychotics 1358 
Epinephrine / Beta-Blockers 1095 
Warfarin (a subset of all anticoagulants) / NSAIDs 342 
Citalopram / QT Prolonging Agents 1892 



Figure 1: Decision Table for Beta-Blockers and Epinephrine 

 
 
 
Specific Aim 2: Develop clinical algorithms that extract and use data from an existing commercially 
available EHR system and integrates with the DDI KB. 
 
 Decision tables and corresponding alerting algorithms were developed to address alert fatigue 
associated with potential DDIs for the 12 pairs shown in Table 2. The investigators met via conference call to 
discuss the decision table developed in Aim 1 as it was transformed into an alerting algorithm. For each 
combination, we searched RxNorm for the drug specific RxCUI values. For diagnoses and relevant past 
medical history, we evaluated ICD-9-CM and ICD-10-CM codes. 
 Algorithms developed over the course of the project are shown in the Appendix. Numerous factors were 
considered when developing the algorithms, as illustrated in the alerting algorithm for beta-blockers and 
epinephrine. This particular algorithm takes into account route of administration for both epinephrine and beta-
blockers, intended use of the epinephrine, and type attributes of the beta-blocker with respect to cardiac 
selectivity, dose, patient renal function, and concomitant medications. 
 As another example, the alert algorithm for potassium supplements and potassium-sparing was limited 
to potassium-sparing diuretics to only three products, spironolactone, amiloride, and triamterene. Some drug 
compendia include other diuretics but there was no evidence to support their inclusion in this alert. The 
algorithm includes factors such as dose of both products, patient age, presence and value of serum potassium 
laboratory test, and kidney function. The warfarin and salicylates interaction algorithm starts with the route of 
administration for the salicylates is the first decision point in the algorithm, with no warnings needed for topical 
administration. For systemic administration of salicylates, non-acetylated and aspirin are treated separately. 
For non-acetylated products, dose of 3 grams per day requires a warning. For aspirin, doses greater than 
100mg/day are of concern. The alerting algorithm for immunosuppresants is specific to only fluconazole. All 
other azole anti-fungal agents require an alert to be given due to their inhibition of cytochrome P-450 enzymes.  
For fluconazole, the route of administration and subsequent dose influences the need for alerts, with oral 
dosages greater than 100mg/day or intravenous doses greater than 200mg/day being problematic. 
 Figure 2 shows the frequency that both drug and patient risk factors were incorporated into alerting 
algorithms. For drug characteristics, the most frequent factors were dose, route of administration and 
formulation. Lower doses are not likely to result in an interaction that can cause harm. Also, topical and other 
non-systemic routes of administration were not likely to result in a DDI as well. Among the 12 algorithms, 
kidney function and patient age were the most common patient-specific characteristics that were incorporated.   

Beta-Adrenergic Blockers + Epinephrine 
	
Order	of	administration	 Epinephrine	given	in	the	presence	of	beta-blockade	 Beta-blocker	given	

after	epinephrine	
Epinephrine	route	of	
administration	

Inhaled	 Ophthalmic	
Epinephrine	

Epinephrine	
combined	with		
local	anesthetic1	

	
Injection	Resulting	in	Systemic	Epinephrine	Effects	

	

Dental	use	 	 	 Y	 N	 	 	
Dermatologic	use	 	 	 	 Y	 N	 	 	
Plastic	surgery	use	 	 	 	 	 Y	 N	 	 	
Epinephrine	indication	 	 	 	 	 	 	 Patient	in	

Anaphylaxis	
Anaphylaxis	
Prevention	

Indication	Other	Than	Anaphylaxis	(including	allergic	reactions	such	as	urticarial,	etc.)	
	

	

Beta-blocker	 	 	 	 	 	 	 	 	 Carteolol	
Levobunolol	
Nadolol	

Penbutolol	
Pindolol	

Propranolol	
Sotalol	

Timolol	
	

Atenolol	
	

Bisoprolol	
	

Esmolol	
	

Metoprolol	 Nebivolol	 Betaxolol	 Carvedilol	 Labetolol	 	

Route	of	administration	 	 	 	 	 	 	 	 	 	 Oral	 Eye		
gel	

Eye	
Drops	

	 	 	 	 	 	 	 	 	

Dose	>	100	mg/d?	 	 	 	 	 	 	 	 	 	 	 	 	 Y	 N	 	 	 Y	 N	 	 	 	 	 	
Is	CrCl	<40	mL/min?	 	 	 	 	 	 	 	 	 	 	 	 	 	 Y	 N	 Y	 N	 	 	 	 	 	 	 	 	
Dose	>	20	mg/d?	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Y	 N	 	 	 	 	 	 	 	 	
Dose	>	300	μg/kg/mL	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Y	 N	 	 	 	 	 	 	 	
Is	patient	CYP2D6	PM?	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Y	 N	 Y	 N	 	 	 	 	
Patient	taking	a	CYP2D6	
inhibitor?		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Y	 N	 	 Y	 N	 	 	 	 	

Dose	>	10	mg/d?	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Y	 N	 	 	 	 	
Dose	>	20/d?	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Y	 N	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Acute	hypertensive	
reaction	is	unlikely	

¢1	 ¢1 ¢2	 ¢2	 	 	 n5	 	 	 	 ¢8	 	 	 	 ¢	 	 	 ¢	 	 ¢	 	 	 	 ¢	 	 	 	 ¢	 	 ¢	 ¢	 ¢	 ¢21	

Hypertensive	reaction	
may	occur,	but	benefit	
likely	to	outweigh	risk	

	 	 	 	 	 	 	 n6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Acute	hypertensive	
reaction	is	likely	

	 	 	 	 	 	 	 	 u7	 u7	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Acute	hypertensive	
reaction	is	possible	

	 	 	 	 n3	 n4	 	 	 	 	 	 n8	 n9	 n10	 	 n10	 n11	 	 n12	 	 n13	 n14	 n15	 	 n16	 n17	 n18	 	 n19	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
¢	=	No	special	precautions.			n	=	Assess	risk	and	take	action	if	necessary. 		u	=	Use	only	if	benefit	outweighs	risk	
	
	
Footnotes:
1.	Inhaled	or	ophthalmic	epinephrine	can	sometimes	produce	systemic	effects,	but	it	does	not	seem	likely	that	
it	would	result	in	a	significant	hypertensive	reaction.	
2.	Epinephrine	is	often	combined	with	local	anesthetics	to	prolong	the	effect	of	the	anesthetic.	The	amount	
used	in	routine	dental	procedures	or	in	dermatologic	practice	(e.g.,	Moh’s	surgery)	is	unlikely	to	produce	a	
hypertensive	reaction	with	beta-blockers.		

3.		Hypertensive	reactions	have	been	reported	in	patients	receiving	local	anesthetics	plus	epinephrine	for	facial	
plastic	surgery	(for	such	use,	go	to	first	line	of	decision	table	and	follow	“Injection	for	Systemic	Effects”)	

4.		In	most	other	cases	where	epinephrine	is	used	with	local	anesthetic,	the	amount	of	epinephrine	absorbed	
systemically	would	not	be	sufficient	to	produce	a	hypertensive	reaction.	But	if	large	amounts	are	used	(such	
as	with	facial	plastic	surgery)	acute	hypertension	may	occur.	

5.	In	patients	on	beta-blockers	who	are	actually	in	anaphylaxis,	administration	of	epinephrine	tends	to	have	
very	little	(positive	or	negative)	effects.	So	most	agree	that	epinephrine	should	be	given	to	treat	anaphylaxis,	
but	one	should	also	be	ready	to	use	alternative	measures	(fluids,	etc.).		

6.	If	epinephrine	is	used	to	prevent	anaphylaxis	in	a	beta-blocker	treated	patient	who	has	been	exposed	to	a	
potentially	anaphylaxis-producing	event	(e.g.,	a	wasp	sting),	it	is	recommended	to	give	the	epinephrine	as	
usual.	Since	the	patient	is	not	yet	in	anaphylaxis,	a	hypertensive	reaction	may	occur,	but	the	potential	
benefit	of	the	epinephrine	almost	certainly	outweighs	the	risk	of	the	acute	hypertensive	reaction.		

7.	When	a	systemic	dose	of	epinephrine	is	given	to	a	person	on	one	of	these	nonselective	beta-blockers,	an	
acute	hypertensive	reaction	is	almost	certain.	Systolic	BPs	of	250	mm/Hg	are	not	uncommon.	Most	people	
can	probably	withstand	a	short	episode	of	such	a	hypertensive	reaction	without	permanent	sequelae,	but	
strokes	have	occurred	in	susceptible	patients.	Thus,	it	is	best	to	avoid	this	reaction	if	possible.	If	a	patient	is	
likely	to	receive	systemic	epinephrine,	it	would	be	prudent	to	use	a	cardioselective	beta-blocker.	

8.	Timolol	is	a	nonselective	beta-blocker,	but	systemic	absorption	of	epinephrine	from	the	eye	gel	appears	to	
be	minimal	compared	to	the	drops.	Thus	a	hypertensive	reaction	is	unlikely.	With	timolol	eye	drops,	
however,	many	cases	of	systemic	beta-blockade	have	been	reported,	so	a	hypertensive	reaction	is	possible.	

9.	At	doses	over	100	mg/day,	atenolol	can	result	in	nonselective	beta-blockade.	

10.	Atenolol	and	bisoprolol	undergo	renal	elimination,	and	may	produce	nonselective	beta-blockade	with	
significant	renal	impairment.		

11.	At	doses	of	20	mg/day	or	higher,	bisoprolol	can	result	in	nonselective	beta-blockade	
12.	At	doses	over	300	mcg/kg/min,	esmolol	can	result	in	nonselective	beta-blockade	
13.	At	doses	over	100	mg/day,	metoprolol	can	result	in	nonselective	beta-blockade.	
14.	Metoprolol	is	metabolized	by	CYP2D6,	and	patients	who	are	deficient	in	CYP2D6	(PMs)	may	develop	higher	
metoprolol	plasma	concentrations	and	nonselective	beta-blockade.	

15.	Metoprolol	is	metabolized	by	CYP2D6,	and	patients	who	are	receiving	moderate	to	potent	CYP2D6	
inhibitors	may	develop	higher	metoprolol	plasma	concentrations	and	nonselective	beta-blockade.	Moderate	
to	potent	CYP2D6	inhibitors	include:	abiraterone,	amiodarone,	bupropion,	diphenhydramine,	duloxetine,	
fluoxetine,	paroxetine,	etc..etc..	

16.	At	doses	over	10	mg/day,	nebivolol	can	result	in	nonselective	beta-blockade.	
17.	Nebivolol	is	metabolized	by	CYP2D6,	and	patients	who	are	deficient	in	CYP2D6	(PMs)	may	develop	higher	
nebivolol	plasma	concentrations	and	nonselective	beta-blockade.	

18.	Nebivolol	is	metabolized	by	CYP2D6,	and	patients	who	are	receiving	moderate	to	potent	CYP2D6	inhibitors	
may	develop	higher	nebivolol	plasma	concentrations	and	nonselective	beta-blockade.	Moderate	to	potent	
CYP2D6	inhibitors	include:	abiraterone,	amiodarone,	bupropion,	diphenhydramine,	duloxetine,	fluoxetine,	
paroxetine,	etc..etc..	

19.	Large	doses	of	betaxolol	may	result	in	nonselective	beta-blockade.	Data	suggests	that	doses	about	20mg	/	
day	there	is	some	loss	of	selectivity.	

20.	Carvedilol	and	labetalol	are	nonselective	beta-blockers	but	they	both	have	some	alpha-blocking	effects	
Theoretically	a	systemic	dose	of	epinephrine	would	be	less	likely	to	produce	a	hypertensive	reaction	with	
these	two	drugs	than	with	other	nonselective	beta-blockers.		

21.	Systemic	doses	of	epinephrine	normally	act	for	only	a	short	time	(minutes)	so	if	a	beta-blocker	is	given	after	
the	epinephrine,	no	interaction	would	be	expected.



 

 
 

Each algorithm was programmed in JBoss Drools rules to permit implementation within a common data 
model environment. All of the algorithms have been placed on the GitHub.com website. The algorithms and 
related concept sets can be found at: https://github.com/dbmi-pitt/iDIA_Rules. A Docker version of the entire 
stack of rules is available at: https://github.com/dbmi-pitt/docker-iDIA-Rules. 
 Once the Drools algorithms were developed, they were tested against the Medicare simulated dataset. 
Figure 3 below displays the application of the algorithm for warfarin and NSAIDs with respect to the proportion 
of subjects having these criteria.  

 
Figure 3: Results from Drug-Drug Interaction Alerting Algorithm for Warfarin and NSAIDs 

 

 
 
 
 The algorithms were then applied to EHR data from Banner University Medical Center Tucson and 
South facilities over a 3-month period from January 1, 2016 to March 31, 2016. Table 5 displays the 
demographic characteristics of persons who were eligible to be included in the patient profiles. For each drug 
combination, individuals taking both medications were eligible to be randomly sampled for inclusion in the 
profile review. As demonstrated below, vulnerable populations were eligible for inclusion in the analysis. Thirty-
eight percent of the cohort was of Hispanic or Latino ethnicity and nearly 23% were non-White/Caucasian. The 
average age was 50 years with a maximum age of 105.  
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Figure 2: Risk Factors Incorporated in Drug-Drug Alert Algorithms



Table 5: Patient Demographics 
Attribute N Percentage 
Total 23712 100% 
Race   
  American Indian / Alaska Native 1011 4.3% 
  Asian/ Pacific Islander / Hawaiian 308 1.3% 
  Black 1179 5.0% 
  Multi-racial 198 0.8% 
  Other 2249 9.5% 
  White or Caucasian 18342 77.3% 
  Refused / Unknown 425 1.8% 
  Missing 11 -  
Ethnic Group   
  Hispanic or Latino 9012 38.0% 
  Not Hispanic or Latino 14269 60.2% 
  Refused 54 0.2% 
  Unknown 374 1.6% 
  Missing 14  
Sex   
  Females 13009 54.8% 
  Males 10713 45.2% 
  Unknown 1 0.0% 
   
 Mean Standard Deviation 
Age 50.1 19.5 
  Min = 18, Max = 105   

 
Each algorithm was evaluated against a random sample of admissions. Table 6 displays the results 

from applying the algorithms to patient profiles involving drug combinations with modifiable risk factors. This 
analysis assumed that an alert is necessary when the combination should be used only if the benefit outweighs 
the risk or if the provider (physician or other prescriber) needs to assess the risk and take action if necessary. 
 

Table 6: Results of Patient Profile Review 
Drug Pair Number 

of 
Profiles 

Alerts 
Simple 

Algorithm 

Alerts 
Complex 
Algorithm 

PPV for 
Simple 

Algorithm (%) 

Improvement 
in PPV (%) 

Amiodarone / QT prolonging 
agents 

50 150 8 5.3% 94.7% 

Citalopram / QT prolonging 
agents 

50 93 0 0.0% 100.0% 

Clonidine/beta-blockers 50 84 4 4.8% 95.2% 
Epinephrine / beta-blockers 50 50 1 2.0% 98.0% 
Immunosuppressants / 
Fluconazole 

46 342 114 33.3% 66.7% 

Opioids / Fluconazole 50 169 13 7.7% 92.3% 
Potassium / potassium-sparing 
diuretics 

39 127 50 39.4% 60.6% 

Warfarin / Non-steroidal anti-
inflammatory drugs 

49 67 66 98.5% 1.5% 

Warfarin / salicylates 52 199 26 13.1% 86.9% 
Warfarin / selective serotonin 
reuptake inhibitors, selective 
norepinephrine reuptake 
inhibitors 

50 122 67 54.9% 45.1% 

 



The results from the patient profile reviews illustrates that for many of the combinations the 
implementation of the alerting algorithms would lead to a substantial reduction in the number of warnings 
without placing patients at harm from a DDI. The improvement in positive predictive value (PPV) ranged from 
1.5% to 100%, with greater than 45% improvement in PPV occurring in all but one situation. For the 
warfarin/NSAIDs combination, there was only a reduction of 1 alert with the complex algorithm, attributable to 
the absence of gastrointestinal medications that would reduce the risk of bleeding. 

It is important to note that for warnings related to metoclopramide and antipsychotics there were no 
modifying factors. Also, for interactions involving QT prolonging medications, there was a lack of evidence to 
permit significant modifications.   
 
5.  Discussion 
 

The results from this project suggest that significant improvements in warnings for DDIs is possible by 
incorporating drug- or patient-specific attributes. As discussed earlier, current drug knowledgebases are 
designed to alert on the presence of the medications, not taking into account factors that would mitigate the 
risk. This leads to excessive alerts. Our research suggests that many commonly overridden alerts can be 
suppressed using existing EHRs data. In many instances, it was challenging to identify appropriate decision 
points, especially for renal function and potassium levels. Therefore, we used conventional values but more 
research is needed to ensure the appropriate value is incorporated into the algorithms. In general, more 
research on the harms associated with DDIs is needed. 
 There are a number of limitations that should be kept in mind when interpreting the results of this pilot 
study. The patient profiles generated for this analysis required patients to be receiving both object and 
precipitant medications, but data on the number of alerts was not available directly. We estimated the number 
of alerts that would be generated by new orders taking into account start date/time and end date/time. For 
some patients, they were not taking products concurrently so no alert would be generated. This may have 
biased the number of simple alerts downward. The patient profiles were not admission specific, meaning that 
data for patients with multiple admissions during the observation period was included in the analysis. 
 
Conclusions  
 This study demonstrates that algorithms can be successfully designed to reduce alert burden 
associated with DDIs. Up to 100% improvement in PPV may result if drug and patient factors are taken into 
consideration when evaluating co-administration of medications. 
 
Significance 
 The findings from this project suggest that alert fatigue associated with DDIs may be partially 
addressed by implementing drug and patient specific alerting algorithms. This may lead to fewer clinically 
relevant DDI warnings being overridden, thereby reducing exposure to potentially harmful combinations. 
 
Implications 
 This pilot project evaluated the feasibility of creating a DDI knowledgebase and associated alerting 
algorithms. While the creation of a DDI-specific knowledgebase for medications is challenging, creating and 
implementing algorithms for specific drug combinations is feasible. Future studies are needed to study the 
implementation of such algorithms to ensure patient safety is not compremised. 
 
List of Publications and Products  

There are no publications for this project at this time. 
Algorithms for the DDIs of interest have been written in Drools and can be found on GitHub at: 

https://github.com/dbmi-pitt/iDIA_Rules. Furthermore, a docker container with all rules is available at: : 
https://github.com/dbmi-pitt/docker-iDIA-Rules.  
 
Priority Populations 

Subjects of all demographic backgrounds were eligible for inclusion in this study. The data used for this 
study was obtained from persons who were admitted to Banner University Medical Center Tucson and South 
inpatient facilities. Because observations were randomly selected for evaluation, inclusion of persons from 
vulnerable groups, including minority racial/ethnic populations, are represented in the study. This includes 



older persons because they are more likely to be on the medications of interest. Furthermore, females were 
included in the study. Due to the nature of the project, pediatric populations were not included in the analysis.  
Because this project uses retrospective data, there are no outreach activities applicable to the study. 
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